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ABSTRACT 

The New Zealand Reanalysis (NZRA) is the first high-resolution convection-permitting atmospheric 
regional reanalysis model over Aotearoa New Zealand (NZ). NZRA has a spatial horizontal grid spacing 
of 1.5km and is forced using data from the Bureau of Meteorology Atmospheric high-resolution Regional 
Reanalysis for Australia (BARRA-R) with approximately 12km horizontal grid spacing. This paper outlines 
the development of NZRA, including the numerical weather forecast model and driving model. In 
addition, the performance of NZRA is compared against BARRA-R and global reanalysis products (ERA-
Interim and ERA5) and validated against observational data collected during June-July 2014 as part of the 
Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. The results demonstrate that 
dynamically downscaling BARRA-R to NZRA considerably enhances the wind and temperature predictions, 
particularly capturing well the diurnal temperature cycle, wind speeds above 95th percentile, and gust 
wind speeds over the high elevation regions of NZ. In addition, NZRA provides better estimates of total 
precipitation over the North Island, Canterbury region, West Coast and the southern part of the South 
Island compared to the Virtual Climate Station Network (VCSN) gridded observation-based product, other 
reanalyses and NIWA’s operational convective-scale forecast model, NZCSM, as was run in 2014. 

1 .   INTRODUCTION

Atmospheric reanalyses provide physically coherent 
and long-term spatially complete records of 
various climate variables (Su et al., 2019; Minola 

et al., 2020) and are today among the most used datasets 
in climatological and geophysical research, due to the fact 
that they are able to generate consistent series of various 
climate variables (Dee et al., 2011). The key benefit is from 
being able to re-forecast historical periods using modern 
forecast models and data assimilation techniques, such as 
four-dimensional variational data assimilation (4D-Var) 
(Bannister, 2017), that make better use of observation data 
from various sources.

Although global-scale reanalyses have advanced 
significantly in quality and provide physically coherent 
and long-term spatially complete information for the 
whole globe, their spatial and temporal resolutions are 
still relatively coarse and it has been demonstrated that, 

with spatial resolutions typically greater than 30-50km, 
they may not be able to capture small-scale meteorological 
process and other sub-grid phenomena, particularly over 
complex terrain (Mesinger et al., 2006; Yoshimura and 
Kanamitsu, 2008; Su et al., 2019). The coarse resolution 
of global reanalyses has also implications on quality 
and impactfulness of subsequent studies, such as the 
hydrological response to climate change scenarios (Miller 
et al., 2003), wind speed over complex terrain (Minola et al., 
2020), the impact of climate change on agriculture (Fuhrer 
et al., 2006), energy (Zhang et al., 2018; Frank et al., 2020), 
extreme winds (Steinheuer and Friederichs, 2020; Taszarek 
et al., 2020), and rainfall (Gleixner et al., 2020; Hu and 
Franzke, 2020).

Tetzner et al. (2019) conducted a regional evaluation 
of meteorological parameters in the southern Antarctic 
Peninsula and Ellsworth Land using two global reanalyses, 
namely ERA5 (Hersbach et al., 2020) and its predecessor 
ERA-Interim (Dee et al., 2011), from the European 
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Centre for Medium-Range Weather Forecasts (ECMWF). 
Although the higher resolution ERA5 outperformed 
ERA-Interim by reducing the cold coastal biases and had 
a better representation of near-surface air temperature 
and wind speed, both the reanalyses underestimated 
wind speed, which could be attributed to the effects of 
topographic features. Validating ERA5 and ERA-Interim 
against observations across Norway and Sweden, Minola et 
al. (2020) also showed that both reanalyses underestimate 
high wind speeds.

Dynamically downscaling global reanalyses to 
higher-resolution regional reanalyses could address the 
shortcomings of the global reanalysis datasets (Komurcu 
et al., 2018; Steinke, 2019; Su et al., 2019; Lu et al., 2021). 
Regional reanalyses can potentially provide more detailed 
meteorological information than global models, by 
leveraging recent advances in higher resolution regional 
numerical weather prediction (NWP) models and data 
assimilation systems (Frank et al., 2020; Lu et al., 2021). 
This is achieved by nesting a high-resolution NWP model 
within a global reanalysis (e.g., ERA5). Due to their higher 
spatial and temporal resolutions, these regional models 
can resolve small-scale forcing events, such as convection 
(Frank et al., 2020; Su et al., 2021), and represent extremes of 
variables more accurately (Komurcu et al., 2018; Steinheuer 
and Friederichs, 2020). 

Comparison between 2 and 6km regional reanalyses 
against the ~80km resolution ERA-Interim, Steinke (2019) 
demonstrated that instantaneous, daily and monthly 
integrated water vapour are significantly better represented 
in the regional reanalyses. Due to their higher spatial 
and temporal resolutions, regional reanalyses can more 
accurately capture the timing, intensity, and spatial extent 
of climate and environmental variables (Leeper et al., 2017; 
Lu et al., 2019). For example, better representation of wind 
gust speeds in higher resolution regional reanalyses enabled 
Steinheuer and Friederichs (2020) to estimate the wind gust 
speeds at different vertical heights using 10-m gust wind 
outputs and other climate variables. The Indian Monsoon 
Data Assimilation and Analysis (IMDAA) dataset, a high-
resolution reanalysis with 12km horizontal resolution, has 
been shown to outperform ERA-Interim over India (Ashrit 
et al., 2020). Acharya et al (2019) evaluated the performance 
of the Bureau of Meteorology Atmospheric high-resolution 
Regional Reanalysis for Australia (BARRA-R) (Su et al., 
2019) in predicting spatio-temporal characteristics of 
precipitation fields across Australia. It was demonstrated 
that BARRA-R outperforms its driving model, ERA-

Interim, and better represents the distribution of wet days 
and transition probabilities.

Frank et al. (2020) demonstrated that the recently 
developed convective-scale regional reanalysis system for 
Central Europe (COSMO-REA2) with a spatial horizontal 
resolution of 2km provides considerable improvement in 
predictions of wind field and precipitation on different time 
scales compared with coarser gridded global reanalyses. 
Having compared the performances of four global and 
three regional reanalyses in representing near-surface 
temperature and precipitation, Keller and Wahl (2021) 
showed that although regional reanalyses add value 
over global reanalyses, particularly for precipitation, the 
performance of reanalysis models varies considerably not 
only between the models, but also between variables and 
locations. Thus, the use of reanalyses strongly depends 
on the specific application and region. Safaei Pirooz et 
al. (2022) compared the performance of three global 
reanalyses and BARRA-R over New Zealand and concluded 
that BARRA-R generally outperforms the other reanalyses.

It is evident that high-resolution regional reanalyses 
significantly enhance the prediction of climate variables 
and their spatio-temporal variability. Gaining a better 
understanding of the past climate and the mechanisms 
leading to extremes and general climatology is essential 
for many environmental, engineering, and meteorological 
studies as well as for improving climate projection model 
estimates. Currently, the highest resolution regional 
reanalysis available for New Zealand is the BARRA-R 
model (Su et al., 2019), which utilises the UK Met Office 
Unified Model (UM) with a horizontal resolution of 12km 
and uses ERA-Interim as the driving model. Su et al. (2021) 
downscaled BARRA-R reanalysis to 1.5km horizontal 
resolution, called BARRA-C, over four major Australian 
cities. It was demonstrated that BARRA-C provides 
additional skill over BARRA-R, with wind and temperature 
performance, particularly over complex and coastal 
regions, enhanced compared with the 12km BARRA-R 
model. Improvements were also observed in BARRA-C 
predictions of the timing and intensity of precipitation 
during convective events as well as in the spatial distribution 
of sub-daily rainfall totals. 

In this study, we describe the development of the 
New Zealand Reanalysis (NZRA) whereby BARRA-R is 
dynamically downscaled to a 1.5km horizontal grid spacing 
over New Zealand. NZRA uses the UM and after completion 
will cover the 1990-2018 period. The aim of our research 
is to demonstrate the added value of the NZRA over its 
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driving model (BARRA-R) and global reanalyses (ERA5 
and ERA-Interim). The paper is structured as follows. In 
Section 2, we outline the NZRA setup and configuration as 
well as the other datasets used in the paper. The evaluation 
of NZRA over a trial period of June-July 2014 against point-
based observations and an observation-based interpolated 
gridded dataset is presented in Section 3, focusing on 
precipitation, air temperature, mean and gust wind speeds. 
Lastly, Section 4 summarises our findings and discusses the 
added skills of NZRA over other reanalyses.

2.   METHODOLOGY AND DATA

2.1     NZRA

The first high-resolution convection-permitting regional 
reanalysis model for New Zealand, the New Zealand 
Reanalysis (NZRA), has been developed at the National 
Institute for Water and Atmospheric Research (NIWA) and 
is based on the UK Met Office Unified Model (UM) (Davies 
et al., 2005). The UM is a non-hydrostatic, fully compressible, 
deep-atmosphere model whose dynamical core, ENDGame 
(Even Newer Dynamics for General atmospheric modelling 
of the environment), solves the equations of motion using 
mass-conservation, semi-implicit, semi-Lagrangian, time-
integration methods (Wood et al., 2014). A comprehensive 
description of parameterisations and physics schemes 
included in UM can be found in Bush et al (2020).

Figure 1:  (a) BARRA-R 12km reanalysis (blue) and NZRA/NZCSM (black) domains. (b) NZRA model orography and the 
location of point observations used in this paper.

(a) (b)

The NZRA domain (Figure 1a) is the same as NIWA’s 
operational convective-scale forecast model. The NZRA 
model has a horizontal grid spacing of 0.0135° × 0.0135° 
(approximately 1.5km) on a rotated pole coordinate system, 
comprising 1350 × 1200 grid points in the north-south 
(meridional) and west-east (zonal) directions respectively. 
The NZRA domain has 70 vertical levels extending from 
near the surface to 40km above sea level. Near the surface, 
vertical levels follow the modelled orography and then relax 
to a uniform radial height above about 18km (62 model 
levels). The model is run with an integration timestep of 
60s. Figure 1b depicts the NZRA’s model orography as well 
as the location of the point observations used in this study 
at Hokitika.

The development of NZRA is similar to NIWA’s 
operational New Zealand Convective-Scale Model 
(NZCSM) but features some differences in the science 
configuration, driving model and forecast length. NZRA 
uses the same ancillary input data as NZCSM, including 
orography, land-sea mask, canopy heights and other land 
cover data. The model uses an underlying orography created 
at the model resolution of 1.5km from the 1 km horizontal 
resolution Global Land One-km Base Elevation (GLOBE) 
dataset (GLOBE Task Team, 1999). Land cover data are 
based on the Climate Change Initiative (CCI) (Hartley et 
al., 2017).

NZRA is a downscale-only system that takes its initial 
and lateral boundary conditions from BARRA-R (Su et al., 
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2019). The NZRA model is re-initialised every six hours 
on the synoptic hours, 00:00, 06:00, 12:00 and 18:00 UTC. 
Lateral boundary conditions have a 30-minute temporal 
resolution. This setup allows for the development of larger-
scale features within NZRA. Similar to BARRA-C (Su et al., 
2021), each hindcast in NZRA is a nine-hour simulation, 
however, the first three hours are discarded due to model 
spin-up and only the last six hours saved. During the 
spin-up period the interior of the higher resolution model 
domain is establishing the finer atmospheric motions that 
may only partially be present in the coarser resolution initial 
conditions and we choose to ignore this period to ensure 
the continuous NZRA dataset is minimally impacted by 
this adjustment process. 

The science configuration used in NZRA is the 
midlatitude version of the second Regional Atmosphere 
and Land configuration (RAL2–M) (Bush et al., 2020). 
Unlike its driving model BARRA-R, NZRA does not use 
a convection parametrisation scheme. Therefore, NZRA 
relies on the model dynamics to represent convective 
motion. As outlined in Su et al (2021), although at 1.5km 
resolution convection and other small-scale processes are 
not fully resolved, it is known that removal of the cumulus 
parametrisation provides more realistic behaviour (Clark et 
al., 2016) and an overrepresentation of low rainfall rates can 
be improved via the introduction of the Leonard term into 
the UM’s sub-grid mixing scheme as described in Hanley 
et al (2019) and implemented in the RAL2-M science 
configuration used by NZRA. 

2.2.   Other Reanalysis and Point-Observation Data

For point-based assessment, observation data collected 
at Hokitika, New Zealand, during June-July 2014 as 
part of the Deep Propagating Gravity Wave Experiment  

(DEEPWAVE)1 campaign over New Zealand (Fritts et 
al., 2016) were used. Considering that data from most 
meteorological stations across New Zealand have been 
incorporated into the BARRA-R’s data assimilation system, 
the DEEPWAVE data provides a set of independent 
observations that can be used for this preliminary 
assessment of the NZRA.

DEEPWAVE studied the dynamics of gravity waves 
(GWs) from the surface of the Earth to the mesosphere 
and lower thermosphere. The project examined how 
tropospheric winds and storms modulate the generation 
of GWs. The project also examined how GWs propagate 
across the tropopause into the stratosphere including 
the polar night jet and tidal winds that influence GW 
propagation and breakdown in the middle atmosphere. 
The data collected during this period have been used for 
various scientific objectives, including investigation of 
orographically induced GW (Witschas et al., 2017), GW 
propagation (Ehard et al., 2016; Fritts et al., 2016), and 
moist biases in various configuration of the UM (Yang et 
al., 2017).

Here, high-temporal resolution (30-sec) point-based 
observation data of rain rate, surface temperature and 
wind speed are used to evaluate the NZRA performance 
for this trial period. The observed temporal resolution 
was down-sampled to match the reanalysis outputs, e.g., 
30-min instantaneous winds and temperature and 30-min 
accumulated rainfall.

In addition to these observation data, two global 
reanalyses, ERA-Interim and ERA5, one regional reanalysis, 
BARRA-R, and one operational forecast model, NZCSM, 
were also compared against NZRA. Table 1 summarises the 

1 https://www.eol.ucar.edu/field_projects/deepwave

Table 1:  Global- and regional-scale reanalysis datasets used in this study.
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main specifications of the NWP models used in this study. It 
should be noted that for the verification period used in this 
study (June-July 2014), an older version of UM employing 
the New Dynamics dynamical core, was in use by the 
NZCSM. The ENDGame dynamical core used in current 
versions of the UM was introduced in the NZCSM in 2017.
Therefore, the results of NZCSM in this study should not be 
interpreted as the current performance of NZCSM. 

To spatially compare precipitation, a gridded 
precipitation dataset based on interpolated observation 
data, called the Augmented Virtual Climate Station 
Network (VCSN), is used. The Augmented VCSN, which 
contains daily precipitation data at 5km grid resolution, 
incorporates considerably more rain observations (around 
1200) compared to the original version of the VCSN (Tait 
and Turner, 2005; Tait et al., 2006; Tait et al., 2012). 

3.   RESULTS AND DISCUSSION

3.1    Point-Based Observation at Hokitika

3.1.1 Wind speed

Figure 2 shows percentile (or Q-Q) plots comparing the 
reanalyses and observation 10m wind speed deviations from 
mean values. The percentile plots provide an indication 
of how the reanalysis resolves the extremes. In addition, 
differences between observed and reanalysed wind speed 
at several percentiles are tabulated in Table 2. As illustrated 
in Figure 2 and Table 2, NZRA more closely matches the 
observed wind speed even at higher percentile thresholds 
in comparison to other reanalysis products. In particular, 
the NZRA wind speed is closer to that of the observations 
above the 90th percentile and up to the 99.5th percentile, 
while the other reanalyses, particularly ERA-Interim and 

ERA5, strongly underestimate the wind speed. In addition, 
NZRA outperforms and adds significant value over its 
driving model, BARRA-R, in estimating strong winds. The 
underestimation of strong winds in reanalyses could be 
attributed to many potential reasons, such as the model’s 
representation of orography, land cover data including 
vegetation types and roughness, poor modelling of wind 
speeds in unstable conditions, and gust parameterisation 
as elaborated on in (Rose and Apt, 2016; Su et al., 2019; 
Minola et al., 2020).

Correlation (R2) values and slope (S) of the best fit line 
between reanalyses and observations for 10m wind speed 
are illustrated in Figure 3. Overall, NZRA has higher R2 
and S values against observations than the other datasets. 
Figure 4 compares the timeseries of wind speed from the 

Table 2:  Difference (m s-1) between 
observed and reanalyses wind 
speeds at various percentiles.

Figure 2:   Comparisons of percentile values between 
observations at Hokitika and reanalyses for 10m wind speed. 
The vertical dash lines indicate the corresponding percentiles 
of the observations.
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reanalyses and point observation at the Hokitika location. 
NZRA predicts peak wind speeds and sudden increases/
decreases in wind speed magnitudes more accurately 
compared to the other products.

3.1.2. Surface temperature

Similar to Figure 2, Figure 5 depicts percentile (or Q-Q) 
plots of 2m surface temperature from the reanalyses and 
observations and Table 3 shows the differences between 
these values at various percentiles. The NZCSM (as was 
run in 2014) and ERA5 overestimate and underestimate 
surface temperature in regimes below the 25th percentile 
and above the 50th percentile respectively. Although ERA-
Interim also overestimates the low percentile temperatures, 
it provides better estimates of high percentile temperatures 

Figure 3 (above):   Linear relationship between reanalysis 
and observed 10m wind speed. “S” and “R2” are the slope and 
correlation of the best fit line, respectively.

Figure 4 (below):   Comparison of 10m wind speed timeseries 
between each reanalysis dataset and observations at Hokitika. 
Time is in UTC.
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than that of ERA5 and NZCSM. NZRA and BARRA-R 
temperature show the best agreement with the observations 
for all percentiles, with NZRA marginally outperforming 
BARRA-R when compared across all percentiles. NZRA 
does tend to overestimate surface temperatures at the 
higher percentile range, while other datasets underestimate.

The average differences between the reanalysis datasets 
and the observed surface temperature, presented as a 
diurnal cycle during June-July 2014 are shown in Figure 
6. ERA-Interim demonstrates a significant cold bias, 
considerably underestimating the temperature at all hours. 
Unlike other products, NZCSM shows a warm bias of about 
+1°C between 06:00 to 21:00 UTC. NZRA, BARRA-R and 
ERA5 have a similar bias and all depict a cold bias at all 
hours. NZRA does however have a smaller bias from 06:00 
to 14:00 UTC compared to BARRA-R.

Figure 7 compares the timeseries of surface temperature 
from the reanalyses and point observations at the Hokitika 
location. NZRA performs considerably better than the 
ERA datasets and NZCSM, and marginally better than 

Figure 5: Comparisons of percentile values between 
observations at Hokitika and the reanalyses for 2m 
surface temperature. The vertical dash lines indicate the 
corresponding percentiles of the observations.

Figure 6: Hokitika diurnal 
surface temperature average 
difference between the 
reanalyses and observations.

Table 3: Difference between 
observed and reanalysed 
surface temperature at 
various percentiles.
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BARRA-R in capturing high and low temperatures as well 
as daily cycles (see 2014-07-15 to 2014-07-31 UTC). Linear 
relationships along with correlation values (R2) and slopes 
(S) of the best fit line between reanalyses and observations 
are illustrated in Figure 8. Overall, NZRA has higher R2 and 
S values against observations than the other datasets.

To further investigate the performance of the reanalyses’ 
predictions of extreme temperatures, Table 4 summarises 
the statistical scores, including Pearson’s correlation, root-

mean squared error (RMSE), bias and mean absolute 
error (MAE), for daily minimum and maximum surface 
temperature against the point observations.

Table 4 indicates that for daily maximum surface 
temperature, NZRA has the best scores among all the 
considered reanalyses, except for the correlation value 
where NZCSM and ERA5 have slightly higher values than 
NZRA. NZRA has the smallest MAE in daily minimum 
temperature. However, ERA5 shows smaller bias and 

Figure 7:  Comparisons of surface temperature timeseries between reanalyses and observation.  
Time is in UTC.
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Figure 8:  Linear relationship between reanalysis and observed 
2m surface temperature. “S” and “R2” are the slope and 
correlation of the best fit line, respectively.

Table 4:  Statistical scores for daily minimum and maximum surface temperature between observations and reanalyses.

RMSE and higher correlation values. BARRA-R, although 
performing worse than NZRA generally, has slightly 
smaller bias value compared with NZRA for daily minimum 
temperature. 

3.1.3.   Precipitation

Safaei Pirooz et al. (2022) demonstrated that ERA5 
and ERA-Interim perform poorly in their predictions of 
precipitation compared with higher resolution products 
such as BARRA-R, particularly over the mountainous 
regions and west coast of the South Island. Therefore, in 
this section, only the precipitation estimates of NZCSM, 
NZRA and BARRA-R are compared against observations. 
Instantaneous rainfall rates at 30 minute intervals as 

simulated by NZRA and NZCSM and measured at Hokitika 
during June-July 2014 are compared in Figure 9a. NZRA 
appears to capture a larger proportion of the higher rainfall 
rates more accurately than NZCSM does, although errors in 
timing and intensity do remain. For closer inspection, the 
daily accumulated rainfall amounts from NZRA, NZCSM 
and also BARRA-R are shown in Figure 9b and compared 
with observed values. It appears that all three products 
provide reasonably accurate estimates of daily precipitation 
amount on the daily timescale, though all datasets both 
under- and over-predict the daily amounts, sometimes 
considerably so, over the course of the DEEPWAVE 
campaign period. The statistical scores comparing 
observations with the NZRA, NZCSM and BARRA-R 
datasets for daily precipitation are shown in Table 5. The 
scores from all the considered models are relatively similar, 
however NZRA whilst having the lowest MAE (good) does 
exhibit the worst correlation, RMSE and bias values.

Figure 10 depicts the percentile comparison plot of 

NZRA, NZCSM and BARRA-R hourly precipitation 
amounts greater than 1mm. Similar performance is found 
across all the datasets at the lowest percentiles ranges (up 
to 50th percentile) after which all begin to noticeably 
underpredict precipitations compared to the observations. 
NZCSM performs better than NZRA and BARRA-R 
at the more extreme percentile range, explaining the 
results in Table 5. Considering the short timeseries used 
in this verification and that this is just one location, not 
representative of all of NZ, in future, a more comprehensive 
assessment of NZRA rainfall will be conducted.

3.2.  Spatial comparison

This section presents an evaluation of spatial variability 
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Table 5:  Statistical scores for daily accumulated precipitation 
between observation and reanalyses.

Figure 9:  Comparison at Hokitika, New Zealand, during June-July 2014 of (a) Instantaneous rainfall rate 
timeseries at 30 minute intervals from point observations and closest NZRA and NZCSM grid points, and (b) 
daily accumulated precipitation, from point observations and closest NZRA, NZCSM and BARRA-R grid points.

in precipitation and frequency of high gust and mean 
wind speeds in the NZRA, NZCSM, BARRA-R and ERA 
datasets. Concentrating only on the non-ERA datasets first, 
the biases in the accumulated daily precipitation of the 
regional reanalyses are calculated using Eq. 1 with respect 
to the Augmented VCSN values for June-July 2014. 

Equation 1: Where dm and d0 are the daily accumulated 
precipitations from the reanalyses and VCSN, respectively. 

In addition, MAE values of total precipitation during 
30/05/2014 – 01/08/2014 averaged over the North and 

South Islands are summarised in Table 6. It is evident that 
NZRA shows smaller MAE over both islands compared 
with NZCSM and its driving model BARRA-R.

Due to the orographic induced rainfall over the 
Southern Alps, there is generally much more rainfall over 
the western side of the South Island than over other areas 
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Figure 10:  Comparisons of percentile values between 
observations at Hokitika and reanalyses for hourly 
accumulated precipitation greater than 1mm. The vertical 
dash lines indicate the corresponding percentiles of the 
observations.

of the country. One of the known issues of BARRA-R is 
that it overestimates precipitation over regions with high 
elevations (Su et al., 2019), as can also be seen along the 
west coast of the South Island in Figure 11b. In comparison, 
the NZRA shows smaller wet bias in precipitation in high-
elevation regions compared with BARRA-R and NZCSM. 
Additionally, across the North Island (Figure 11a), NZRA 
also exhibits smaller biases, particularly over the west 
coast and southeast part of the North Island. NZCSM has 
a predominately wet bias over much of the North Island, 
with NZRA following BARRA-R in terms of spatial 
distribution of wet and dry biases over the North Island, but 
the magnitude of the bias is often smaller (Figure 11a). and 
BARRA-R have wet and dry biases over the most part of the 
island. A notable exception being over the Auckland region. 

Positive and negative biases during light and strong 
wind events are another identified issue in BARRA-R (Su et 

Table 6:  Mean 
absolute errors of 
total accumulated 
precipitation 
(during 30/05/2014 – 
01/08/2014) between 
VCSN and NWP models.

al., 2019) and other reanalyses (Minola et al., 2020). Safaei 
Pirooz et al (2022) also showed that BARRA-R, unlike 
ERA5, does not capture the high gust wind speeds over 
the more southern mountains of the South Island. Figure 
12 compares the frequency of gust wind speeds exceeding 
25ms-1 in all the datasets considered in this study.

Similar to the analysis in Safaei Pirooz et al (2022), Figure 
12 depicts that BARRA-R is unable to simulate strong wind 
speeds over the Southern Alps and other high peaks such as 
Mount Taranaki, and consequently shows lower occurrence 
of these events. All of the datasets show signs of similar 
high gust wind speed regions offshore, but NZRA and 
NZCSM deviate significantly over land from BARRA-R, 
ERA5 and ERA-Interim, particularly over high elevation 
regions, due to their higher spatial resolution being better 
able to resolve NZ’s mountainous terrain. NZRA exhibits 
a higher frequency of strong winds compared to NZCSM 
over a larger area of mountainous terrain, particularly the 
central and southern most peaks of the South Island and 
Tararua, Ruahine and Central Plateau regions of the North 

Island. The other reanalyses, BARRA-R, ERA5 and ERA-
Interim, significantly underestimate strong winds and their 
frequency over land. 

Similar performances can be seen in the frequency of 
relatively strong surface mean wind speeds in Figure 13. 
Here, frequency of surface mean wind speeds greater than 
5ms-1 over New Zealand are plotted. More so than in Figure 
12, a stark north-south split is exhibited in the BARRA-R, 
ERA5 and ERA-Interim datasets, all three indicating very 
little occurrence of >5ms-1 mean wind speeds over the South 
Island compared to NZRA and NZCSM. Comparing against 
VCSN data, Safaei Pirooz et al. (2022) showed previously 
that BARRA-R, ERA5 and ERA-Interim have large negative 
biases in mean surface wind speed over the South Island 
generally, so the higher frequency of >5ms-1 mean wind 
speeds over the South Island in NZRA represents a clear 
improvement over the other reanalysis datasets.
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Figure 11:  Mean bias percentages in daily accumulated precipitation during June-July 2014 from NZRA (left), NZCSM 
(middle) and BARRA-R (right) against the augmented VCSN across: (a) North Island, and (b) South Island.

4.   CONCLUSION

This paper describes the development of the first high-
resolution convective-permitting regional reanalysis model 
for New Zealand, called New Zealand Reanalysis (NZRA). 
NZRA, with a spatial horizontal grid spacing of 1.5km 
and 30 minute temporal resolution, is based on the UK 
Met Office Unified Model and is dynamically downscaled 
from the recently developed Bureau of Meteorology 
Atmospheric high-resolution Regional Reanalysis for 
Australia (BARRA-R) with approximately 12km horizontal 
resolution. BARRA-R provides both the initial and lateral 
boundary conditions to NZRA. 

NZRA performance against independent observation 
data collected for the DEEPWAVE period (June – July 
2014), has been evaluated to demonstrate its skill compared 
to existing global and regional reanalyses that cover New 
Zealand. It is shown that NZRA provides significantly 
better estimates of surface temperature for all percentiles 
and temperature ranges. In addition, NZRA surface wind 
speeds are closer to observations, particularly above the 90th 
percentile, compared with the other datasets. The biases 
in NZRA accumulated daily precipitation are generally 
smaller than NZCSM and BARRA-R over most of the North 
Island, and across the Canterbury region, West Coast and 
southern parts of the South Island. Standout areas where 
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Figure 12:  Frequency 
(ranging 0 to 1) of gust wind 
speeds greater than 25ms-1 
over New Zealand for the 
period June – July 2014 from 
the different reanalyses and 
NZCSM. The native temporal 
resolution of each product 
(see Table 1) has been 
used in the calculation of 
frequencies.

Figure 13:  Frequency of 
surface mean wind speeds 
greater than 5ms-1  over New 
Zealand for the period June-
July 2014 from the different 
reanalyses and NZCSM. The 
native temporal resolution 
of each product (see Table 
1) has been used in the 
calculation of frequencies.
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NZRA has larger biases than BARRA-R in particular are 
over the Auckland region (wetter) and southeastern parts of 
Fiordland (wetter). In addition, it appears that, for the trial 
period, NZRA provides an acceptable estimate of timing 
and intensity of rainfall rates. NZRA also outperforms 
its driving model in predicting strong winds over high 
elevation regions. Considering that the validation period 
was relatively short, a more comprehensive evaluation of 
NZRA will be conducted in future.

One of the limitations of the NZRA setup is the relatively 
short forecast length (9 hours) and short spin-up period (3 
hours). The latter could lead to the model spin-up artefacts 
to still be present, especially convective clouds and rainfall 
as also elaborated by (Su et al., 2021). Nevertheless, NZRA 
outperforms its driving model and other global reanalyses 
in predicting precipitation, temperature and wind speed, 
particularly over mountainous and coastal regions.

NZRA will provide a deeper understanding of 
past climatology and extreme weather at local scales, 
particularly in places where long-term observations are 
not available. This knowledge can potentially contribute to 
several disciplines, including engineering design projects, 
meteorological and climatological studies, enhancing 
climate projection models, environmental studies, and 
risk and hazard assessments. Production runs of NZRA 
are currently underway at NIWA and will cover the 1990 
– 2018 period.
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