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Abstract 

An analysis of daily precipitation output from a regional climate model was 

undertaken in order to estimate future changes in precipitation extremes for New 

Zealand. Daily rainfall for present (1971—2000) and future (2071—2100) climate 

under the Intergovernmental Panel on Climate Change Special Report on Emissions 

Scenarios A2 and B2 emission scenarios, was simulated by the regional climate 

model PRECIS, developed at the UK Met Office Hadley Centre. Return values of 1-

day precipitation extreme for a 5-year return period were calculated from a 

generalized Pareto extreme value model fitted to the tail of the rainfall distribution. A 

test of the statistical analysis in several regions of New Zealand revealed that the 

generalized Pareto model was appropriate for estimating daily precipitation extremes 

over the country for short return periods, but was unable to realistically capture the 

changes in longer return periods under transient climate change. For long return 

periods, a separate analysis of the regional climate model simulations suggested 

that the increase in the heaviest rainfall extremes in the country has an upper limit in 

the range of between 7 to 9% per Kelvin of warming. Similarly, an ensemble of 

global climate models from the Coupled Model Intercomparison Project 3, suggested 

an increase of 5 to 12% per Kelvin. For New Zealand, increases in precipitation 

extremes greater than that predicted by the widely used Clausius Clapeyron 

relationship (6.5% per Kelvin), should be considered in future planning.  
                                                
1 Corresponding author address: Trevor Carey-Smith, NIWA, Private Bag 14 901, Kilbirnie, Wellington, New 
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1. Introduction 

Extreme rainfall is defined as a “rare” event generating a relatively high 

amount of precipitation. The characteristics of precipitation extremes vary spatially 

according to the physical nature of a region (such as the presence of mountains or 

large bodies of water), however, the less frequent a high rainfall event occurs in a 

region, the more extreme it is classified. Heavy rainfall events can produce flooding, 

which often causes damage to infrastructure and can have a serious impact on the 

agricultural industry. 

Many studies using different methods have been undertaken to estimate 

changes in the frequency and the intensity of extreme precipitation events. One such 

study in the New Zealand context (Griffiths, 2007) analysed historical trends in 

rainfall extremes using indices of extremity from daily station data for the periods 

1930-2004 and 1950-2004, and found that high rainfall events are highly correlated 

with circulation. Griffiths (2007) defined two indices of rainfall extremity named “the 

very wet day” and ”the extremely wet day”, calculated as the 95th and 99th 

percentile rainfall value respectively. Temporal trends in the indices showed a west-

east pattern across the mountains of both islands for both periods, with an increase 

of extreme precipitation in the west, and a decrease in the east. A seasonal analysis 

over the period 1958-2004 exhibited decreased summer extreme precipitation in 

eastern areas of both islands, and increased extremes in winter and spring in the 

western South Island. 

Regional climate models have become important tools for evaluating how 

local rainfall extremes might change in the future. In a leading example of this 

approach, Frei et al. (2006) analysed changes in precipitation extremes in Europe 

using extreme value theory, based on six European regional climate models for 

present (1971-1990) and future (2071-2100) climate under the Intergovernmental 

Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) 

A2 emission scenario (Nakicenovic et al. 2000). Quantiles of 1 and 5-day 

precipitation extreme for return periods of 2, 5, 10, 20, 50 and 100 years were 

estimated from a generalized extreme value distribution fitted to seasonal 

precipitation maxima. The results indicated good agreement between the models for 
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an increase in the frequency of precipitation extremes in northern parts of Europe 

and a decrease in the south. 

The purpose of the study presented in this paper was to examine possible 

methods of using climate model output in order to estimate changes in precipitation 

extremes for New Zealand resulting from climate change. This was initially done by 

analysing output from a regional climate model using the statistical method of 

extreme value theory. Subsequently, comparisons were made between the regional 

climate model and global climate models from the World Climate Research 

Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3, 

Meehl et al. 2007). This was done in an attempt to elucidate the maximum possible 

change for the country’s heaviest rainfall extremes, and to also encompass some of 

the uncertainty associated with using different climate models. 

2. Data Sets and Methods 

a. Data Sets 

1) OBSERVATIONS 

This analysis used an observational rainfall data set created on a 0.27° 

latitude/longitude grid covering all of New Zealand for a 29-year period (1972—

2000). The daily rainfall surface was estimated using a second-order derivative 

trivariate thin plate smoothing spline spatial interpolation model, incorporating the 

longitude and the latitude as location variables, and a mean annual rainfall variable 

(Tait et al., 2006). The process minimises the generalized cross validation by fitting a 

smooth surface to the data which incorporates a small error at each data point. The 

interpolation is performed with an a-priori square root transformation of the daily 

rainfall observations (and subsequent back transformation) on a complete subset of 

128 climate station daily rainfall records. The square root transformation is used to 

help in normalizing positively skewed data sets, reducing the standard errors in the 

fitted surfaces.  The weakness of this method is that it can result in poor interpolation 

in areas with a low density network of climate stations, possibly missing very 

localized rainfall events. Furthermore, it has been shown by Tait et al. (2006) that 
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interpolation often underestimates rainfall in some areas, especially at relatively high 

altitudes. For this study, the rainfall surface from Tait et al. (2006) was interpolated to 

the resolution of the regional climate model (~30 km) using a bilinear interpolation 

and is referred to as VClim for the remainder of this paper. The deficiencies 

mentioned above meant that VClim was not an ideal benchmark for this study on 

extreme precipitation, particularly in regions of low station density, however the data 

set allowed for spatial comparisons which were not possible with raw station 

observations. 

In addition to the VClim gridded data set, a selection of observing stations 

were used to investigate the effect interpolation has on extreme rainfall events 

(Figure 1). These stations were selected to be representative of the different rainfall 

regimes around the country and all have data available for the full 29 years. 

 

 

Figure 1: Locations of climate stations and regions used in this study. Stations with 
relatively high (low) rainfall are shown with blue (red) dots. Coloured shading 
demarcates six coherent climate regions identified by Mullan (1998) who used a 
rotated EOF analysis of rainfall data to isolate parts of New Zealand within which the 
characteristics of the mean rainfall are relatively similar. 
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2) SIMULATIONS 

This study used data sets of 24-hour rainfall totals simulated by the PRECIS 

regional climate model (RCM, HadRM3P, Jones et al., 2004) and its parent global 

climate model (GCM, HadAM3P, Jones et al., 2005), both developed at the UK Met 

Office Hadley Centre. Use was also made of 16 global climate models from the 

CMIP3 multi-model data set. These models were all run under the IPCC SRES A2 

emission scenario. 

The RCM was run twice for a 30-year time slice of present climate (1971—

2000); once from boundary conditions produced by the global model with observed 

sea surface temperatures (Control), and once by boundary conditions taken from 

ERA-40 reanalyses (Reanalyses). Observed sea surface temperatures (HadISST2) 

were used in both cases. An ensemble of three future climate simulations (2071—

2100) was also generated; two under the A2 emission scenario (A2 Run 1; A2 Run 

2) and one under the B2 emission scenario (B2 Run 1). The A2 scenario consists of 

“relatively high” emissions from a world focussed on nation states and with 

continuously increasing population. The B2 emission scenario has lower emissions 

than the A2 scenario, with much slower population growth and an emphasis on local 

solutions to environmental and social issues (Rowell, 2005). 

It should be noted that the maximum altitude of the Southern Alps was not 

fully resolved by the 30 km resolution RCM. The highest gridbox in the RCM was at 

2400 m while in reality numerous peaks exceed 3000 m. This model resolution 

meant that it is likely some orographically induced localised rainfall events were not 

simulated by the RCM. However, it was the change in extreme precipitation that was 

of primary interest in this study and this does not explicity depend on having the full 

range of precipitation event magnitudes simulated. 

b. Methods 

This study used extreme value theory (EVT) to estimate future changes in 

precipitation extremes within New Zealand. EVT is well developed, and has been 

used by several groups for analysing extreme hydrological events (Frei et al., 2006; 

Li et al., 2005; Madsen et al., 1997; Rosbjerg et al., 1992), as well as extreme wind 
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speeds (Brabson and Palutikof, 2000; Pandey et al., 2001). Frei et al. (2006) used 

the annual precipitation maxima to estimate return values of extreme rainfall, which 

meant that other significant events available in the data were omitted. An alternative 

method is the peaks over threshold (POT) analysis (also called partial duration 

series) which uses rainfall events that exceed a carefully selected high threshold 

(Coles, 2001). In this study, the POT method was used to select extreme events to 

which a Generalized Pareto Distribution (GPD) was then fitted (May, 2007; Yiou et 

al., 2008). The methodology is now outlined in detail. 

1) THE PEAKS OVER THRESHOLD APPROACH 

Let the random variable X  denote the daily rainfall observation with an 

unknown distribution G . The peaks over threshold (POT) approach consists of 

estimating the conditional probability that X  is less than x  given that X  exceeds 

some threshold
0
x , such that 
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Pickands (1975) showed that as the threshold 
0
x  becomes large, the conditional 

distribution converges to a GPD with a shape k  and a scale a  as parameters. The 

GPD has a distribution function 
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When 0k > , the distribution has zero probability density for ( ) 0
x a k x! + , while for 

0k < , there is no upper bound (
0
x x! ! " ). The special case 0k = , yields the 

exponential distribution with mean a  (Hosking and Wallis, 1987). 

The POT approach involves the choice of an appropriate threshold level,
0
x , 

which, in this study, was calculated from the mean, E( )X , and standard deviation, 

S( )X , of the daily rainfall distribution as 
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 0 E( ) S( )x X q X= +  (3) 

where 0q !  (Madsen et al., 1994). This approach is advantageous as it uses the 

characteristics of the distribution in question to calculate the threshold rather than 

some arbitrary fixed definition of threshold (such as 50 mm within 6 hours). 

An important property of a Generalised Pareto Distribution, X , is that 
0

X x!  

is also a GPD with the same shape parameter k , given that 
0

X x>  (Rosbjerg et al., 

1992). This means that for sufficiently high threshold, k  is nearly constant. Figure 2 

shows how k  varied depending on the threshold parameter, q , for two 

representative sites. Data from actual climate stations are shown along with the 

nearest gridpoint from the gridded observational data set and the control and 

reanalyses RCM runs. For q  between 1 and 2, the shape parameter was reasonably 

flat for all data sources. Below 1q , k  often had a positive slope and above 3q , 

k  began to diverge. Using a value of 2q = , provided threshold values between 7 

and 14 mm for Outram and between 45 and 65 mm for Bainham. Using these 

threshold values meant that the number of exceedances stayed constant at 

approximately 500 (out of a total of ~10500 days) for all data sources from both of 

these sites. A similar analysis for a number of different representative climate 

stations across New Zealand confirmed 2q =  as a suitable choice for application of 

POT to New Zealand rainfall. 

2) EVENT INDEPENDENCE 

An important assumption of the statistical theory of extreme value analysis states 

that consecutive exceedances have to be independent, which is often violated when 

using real geophysical observations. Indeed, hydrological events often last several 

days, so a daily rainfall event may often be related to one on an adjacent day. 

However, according to previous work done in this area the temporal dependence in 

daily rainfall series is weak at the level of extremes (Coles, 1994). 

The partial duration series method involves the selection of an appropriate 

threshold level, which should be large enough to make this assumption valid. In this 

study two approaches were used to check whether it was reasonable to assume that  
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Figure 2: Relationship of the q threshold parameter to both the shape parameter k (solid) 
and T-year event magnitude (dashed). Outram (a) is a relatively dry location on the east 
coast of the South Island and Bainham (b) is a wet location on the northern tip of the South 
Island. Site longitude and latitude are shown in brackets. 

 

the exceedances were independent. By comparing the magnitudes of successive 

rainfall exceedances, it was possible to identify the level of dependence between the 

magnitude of extreme events. This was done for a selection of sites and it was found 

that the correlation between successive exceedances was very close to zero (R 

typically less than 0.07). 
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The second approach used was based on physical considerations, and 

consisted of analyzing the number of days between consecutive extreme events. If 

events were not independent, it was expected that successive events more closely 

spaced in time would be more highly correlated than those with larger separation. 

Analysis of a selection of observing sites with rainfall records longer than 100 years 

showed that about 15% of exceedance events occurred on consecutive days. The 

correlation between successive events grouped by separation is shown in Figure 3. 

With the exception of Stephens Island, a decrease in correlation with increased 

separation time was not observed, suggesting that the assumption of event 

independence was not unreasonable. The increased spread in R with increasing 

separation time was due to the decreasing sample size. 

 

  

Figure 3: Correlation between successive rainfall exceedances. The five climate stations 
shown (longitude and latitude shown in brackets) each have rainfall records longer than 100 
years. 
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3) PARAMETER ESTIMATION 

Once a suitable threshold has been determined, the parameters of the GPD 

can be estimated by the L-moments method, also referred to as linear combinations 

of expectations of order statistics (Hosking, 1990). This method is very powerful in 

parameter estimation as compared to other methods, such as maximum likelihood or 

the method of moments. It has the advantage of being less influenced by outliers 

and less subject to bias estimation. This method is particularly useful for small 

samples since the L-moments remain fairly accurate. 

The shape factor k  and scale factor a  of the GPD can then be found using 

estimates of the first and second L-moments, 
1
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where 
2 2 1
! " "= is an estimate of the L coefficient of variation (Hosking, 1990). 

4) ESTIMATION OF THE T-YEAR EVENT 

If the GPD with parameters a  and k  is a suitable model for rainfall 

exceedances above a threshold 
0
x , then the return level 

m
x  can be defined as the 

precipitation intensity that is exceeded on average once every m  observations. 

Therefore using equation (2), for 
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It is convenient to interpret return levels on an annual time scale, so that the 

T-year return level is the level expected to be exceeded on average once every T 

years. So if there are !  observations per year, this corresponds to the m -



Carey-Smith,Dean,Vial;,Thompson: New Zealand precipitation extremes modelled 

 

33 

observation return level, where m T!= . Therefore, from equation (5) the T-year 

event, 
T
x  as defined by (Madsen et al., 1997) is 
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Figure 2 shows how the 5-year event magnitude varied with threshold for two 

representative sites. The event magnitude was relatively flat for 1q >  giving further 

confidence in the value 2q =  chosen for this study. 

3. Results 

a. Regional Climate Model Evaluation 

In this section, an evaluation of the mean daily rainfall and precipitation 

extremes for the present climate (1972—2000) as simulated by the regional climate 

model (RCM) is presented. The results from the 20th century RCM simulations were 

compared with the gridded observational data set VClim as well as individual 

stations. 

Figure 4 shows some examples of the Generalised Pareto Distribution applied 

to extreme rainfall data, plotted against a logarithmic percentile axis to highlight the 

structure of the extremities. When daily rainfall data are displayed in this way, the 

99.9 percentile is roughly equivalent to an average return interval of 3 years and the 

99.99 percentile to a 1 in 30 year event. 

For Milford Sound, the observations and RCM simulations all showed a 

smooth increase until between the 99.9 and 99.95 percentile, at which point a dip in 

the tail was observed (solid lines). The modelled GPD curves for 2q = , while 

generally a good fit up to the 99.95 percentile, failed to fit this dip (dashed lines). The 

difference between the GPD fits to the control and the A2 run1 continued to grow 

indefinitely as the percentile was increased. In fact the actual data suggested that 

the difference between the two runs became constant. 
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Figure 4: Logarithmic percentile plot of daily precipitation for Milford Sound. Data 
from the climate station (purple), the RCM Control (green) and the RCM A2 Run 1 
simulation (red) are shown by the solid lines. Two different GPD fits to each of these 
data sets are also shown. The vertical lines correspond to the threshold used in the 
computation of each GPD. For these 30 year time series, the 99.99 percentile 
contains a single point, hence it is inherently noisy. 

 

An approach taken by some researchers has been to limit the shape 

parameter to be positive, and determine the threshold from the subsequent 

goodness of fit. In Figure 4 the GPD fit for a high threshold of 6q =  is also displayed. 

Even with this threshold the best fit was not always a positive shape parameter, and 

negative fits were not necessarily any better then the original fits. In fact, it was found 

that in most cases the shape parameter became highly unstable at these high 

thresholds, which contravenes the assumptions underlying the use of the GPD. Here 

it is suggested that a three parameter polynomial is required to adequately fit both 

modelled and observational data in a POT analysis. This was not attempted in the 

study but remains an area for further investigation. In summary, our analysis 

suggested that the method described here was only able to accurately characterise 
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changes up to return periods of 3—5 years, and as such results are not presented 

beyond this time-frame. This short return period still allows for consideration of the 

regional changes observed in the model under a future climate. 

1) DAILY MEAN RAINFALL 

The mean daily rainfall distribution over New Zealand for the RCM (Control) 

and the observational data set (VClim), as well as their percentage difference, are 

shown in the upper plots in Figure 5. The RCM reproduced the observed daily mean 

precipitation pattern quite well; exhibiting the strong west-to-east mean rainfall 

gradient in the South Island, due to the dominant westerly winds interacting with the 

main mountain range. 

The percentage difference, shown in the upper right plot, indicated that much 

of the country was drier in the RCM, especially in the regions of Canterbury, Hawkes 

Bay/Gisborne, New Plymouth, as well as in Northland and in southern South Island 

where the mean rainfall was underestimated by more than 50%. On the other hand 

the mountainous areas experienced wetter conditions, and the largest differences 

seemed to occur on the top of the mountain ranges in the South Island where the 

RCM overestimated observations by up to 100%. This positive error may not be 

entirely model error as the gridded data set is known to underestimate rainfall 

amounts in high mountain regions (Tait et al., 2006). 

2) PRECIPITATION EXTREMES 

The 5-year return interval 1-day extreme precipitation amounts generated by 

the observational data set and the RCM control are displayed in the lower plots in 

Figure 5. The largest return values from both the RCM and the observations were 

along the west coast in the South Island, with relatively high return values also 

observed along the east coast of the North Island. This is to be expected as heavy 

precipitating systems in New Zealand are often associated with advection and 

convergence of moist air masses of subtropic and/or polar origin. Rainfall extremes 

mostly occur by orographic lifting, but they can also arise from convective showers 

embedded in weather systems. 
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Figure 5: Comparison between the gridded observations and the RCM control run for 
mean daily rainfall (top row) and the 5-year event magnitude (bottom row). 

 

There were, however, significant differences between the gridded 

observations and RCM control run. The percentage differences (lower right plot of 

Figure 5) suggest that the RCM tended to overestimate extreme rainfall events 

especially in the mountain ranges of both islands. Although a similar pattern was 

observed in the mean of the daily rainfall distribution, it was much more pronounced 

in the extreme rainfall distribution. Either the RCM overestimated extreme rainfall 

events, or the interpolation of the observational data set introduced too much 

smoothing. 
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3) ERA-40 REANALYSES 

An RCM simulation driven by boundary conditions taken from ERA-40 

reanalyses was performed to quantify the effect any biases in the GCM circulation 

may have had on the mean and extreme rainfall (Figure 6). 

 

 

Figure 6: Comparison between VClim and the 20th century RCM simulations for 
mean daily rainfall (top row) and the 5-year event magnitude (bottom row). The left 
and central columns show the percentage difference between the two RCM 
simulations and the VClim data set. The right column shows the percentage 
difference between the RCM reanalyses and RCM control runs. 

 

The ERA-40 data set was created by assimilating numerous observations into 

a dynamical model in a way that maintained a physically consistent solution. As such 

it represents the “best guess” at the true state of the atmosphere and it is expected 
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that the RCM reanalysis should not have contained any significant circulation biases. 

However, the GCM, used to drive the RCM control, did contain circulation biases, 

including an increase in the strength of the westerly circulation. This resulted in the 

east-west gradient in the mean precipitation over the South Island decreasing by 

between 10 and 20% from the Reanalyses to the Control (Figure 6; top right). 

However, the error in the Control compared to VClim was about 50% in the east and 

100% in the west (Figure 6; top left). Hence the circulation biases in the GCM only 

accounted for a small fraction of the mean rainfall bias in the control simulation. The 

remaining bias is hypothesised to be due to the topography of the RCM, the 

parameterization of the rainfall processes used by the model or biases in the VClim 

rainfall surface. 

Unlike the changes in mean rainfall, the biases in the simulation of the 5-year 

event magnitude were substantially reduced in the reanalysis simulation, mainly over 

the North Island (Figure 6; bottom row). The reasons for this may be partially related 

to biases in the mean circulation of the GCM, however other factors may also have 

played a part. For example, extreme precipitation is dependant on humidity and it is 

possible that the GCM was biased in this field with respect to the ERA-40 data set. 

Additionally, the ERA-40 simulation contained a representation of the actual storms 

that passed over New Zealand, while the GCM may not have had the correct type, or 

number of storms. This last point, while not necessarily affecting the mean 

precipitation, may have had a significant impact on outlier events and therefore 

extreme precipitation. 

4) SITE SPECIFIC COMPARISON 

In order to further investigate the cause of the differences in extreme rainfall between 

the RCM control and gridded observations, rainfall records from the climate stations 

shown in Figure 1 were examined. The 5-year event for each station and for the grid 

point nearest to the station in the gridded observations, the RCM control and the 

RCM reanalyses run is shown in Figure 7. For all stations except Outram, the event 

magnitude from the VClim data set was less than that from the actual station. This 

was most obvious for the wet sites shown in Figure 7b. For both dry and wet sites, 
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the range of event magnitudes from the RCM control was much more consistent with 

the station data than with the VClim data. 

 

 

Figure 7: Comparison of 5-year event magnitude calculated from the climate station time 
series (Station), the gridded observations (VClim), the RCM control run and the RCM driven 
by ERA-40 reanalyses. Relatively dry stations (a) and wet stations (b) are arbitrarily 
separated to allow for different y-axis scales. 

 

These results again indicate that the gridded observations may underestimate 

extreme precipitation events, particularly in mountainous areas (for example 

Hinemaiaia) and very wet regions. This would account for some of the discrepancy 

between the RCM and VClim observed in Figure 5. 

b. Simulated Changes in Precipitation Extremes 

Precipitation extremes for the future climate (2072—2100) as simulated by the 

regional climate model were compared with those derived from the present climate 

(control simulation) and the absolute and percentage change in the 5-year rainfall 

event magnitude distributions are presented in Figure 8. All of the future simulations 

had larger event magnitudes than the control over most of the country. Only the 

southwest tip of the South Island had a consistent decrease in event magnitude in all 

three simulations. The strongest percentage changes were in the north of the North 
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Island and the east coast of the South Island. The largest absolute increases in 

event magnitude were on the west of the Southern Alps and in the Bay of Plenty. 

 

 

Figure 8: Percentage (top) and absolute (bottom) difference plots showing the 
change in 5-year rainfall event magnitude between the RCM control and the 3 future 
RCM runs. 

 

It is interesting to note that in terms of the statistics presented in Figure 8, the 

second A2 simulation had more in common with the B2 simulation than with the first 

A2 simulation. This suggests that the inherent variability in extreme precipitation 

events was more significant than any change the difference in mean temperature 

between these two scenarios might have produced, at least for short return-interval 

extremes. To investigate this further, Figure 9 shows the area-averaged 5-year 

rainfall event magnitude for each of the six climate regions introduced in Figure 1. 
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The gridded observations had a lower (or very similar) event magnitude than both 

the 20th century RCM runs in all regions except the south east of the North Island. 

As was shown in Figure 7, this is likely to be a result of the interpolation scheme 

smoothing out many observed extreme rainfall events. 

 

 

Figure 9: Variation in the extreme precipitation event magnitude over six different climatic 
zones within New Zealand. Data are shown from 4 free running RCM simulations (solid 
lines), the RCM constrained by ERA40 reanalyses (dotted line) and the VClim regridded 
observations (dashed line). 

 

Figure 9 also shows that the future simulations had larger event magnitudes 

than the 20th century simulations for all six climate regions. However, no one RCM 

simulation had the strongest events across all regions, in fact there was considerable 

overlap and variability between the different model runs. In addition, for all three 

scenarios, the parent global model was identical. It is likely that additional regional 

variability would be introduced if it was possible to use a variety of driving global 

models. Altogether, this suggests that this limited set of three thirty year simulations 
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driven by one global model was insufficient to accurately quantify any regional 

differences in changes in extreme precipitation due to climate change. 

c. Factors Limiting Changes in Precipitation Extremes 

According to the Clausius-Clapeyron constraint, the maximum amount of 

available moisture in the atmosphere increases by about 6.5% per degree of 

warming (Boer, 1993; Held and Soden, 2000). It has been suggested that extreme 

precipitation events are those that occur when all available moisture has been 

precipitated out, and therefore that the magnitude of extreme precipitation events will 

also increase by about 6.5%/K (Allen and Ingram, 2002; Pall et al., 2007; Trenberth, 

1999). However, recent studies have shown that extreme precipitation scales not 

only with moisture content, but also with the vertical profile of vertical velocity and the 

moist adiabatic temperature lapse rate (O'Gorman and Schneider, 2009; Sugiyama 

et al., 2010). Results from WCRP global climate models suggest that precipitation 

extremes increase more slowly than moisture content in the extra-tropics (O'Gorman 

and Schneider, 2009), whereas in the tropics changes in precipitation extremes often 

exceed those in water vapour content (Sugiyama et al., 2010). Therefore, using the 

value of 6.5%/K to estimate the changes in precipitation extremes is likely to give 

incorrect predictions, particularly when attempting to estimate changes on a regional 

scale. 

In theory, it should be possible to estimate the maximum expected 

precipitation change per degree of warming using extreme value theory. However, 

the tendency of the GPD to use a positive shape parameter on these relatively short 

time series, as discussed above, means that the change per degree of warming 

increases exponentially with increasing return period. The model data does not 

support this result, and it is reasonable to postulate that there are physical processes 

in the atmosphere that are likely to restrict extreme precipitation increases to some 

limit, albeit different from 6.5%/K. 

The question then remains as whether it is possible to predict the likely 

change in high return period events from such short data series. Figure 10 is a 

logarithmic percentile plot of the percentage change in rainfall amount per degree of 

regional warming. Percentiles were calculated for control and future data sets 
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separately and the percentage change at each percentile (normalised by the regional 

temperature change) is presented. These calculations included all data for the 

domain of the Regional Climate Model, both land and sea points, which increased 

the number of data points available to describe the tails of the distribution, but meant 

that the data was no longer independent. Extreme precipitation events are mainly to 

be found in certain areas in the domain (for example the west coast of the South 

Island) therefore the conclusions drawn below are not representative of the entire 

domain, but are useful in describing changes in regions of heavy precipitation. In 

addition, because the data in Figure 10 is not from a single location, the percentiles 

can not be meaningfully converted to average return intervals as was done for 

Figure 4. 

 

 

Figure 10: The percentage change in precipitation (per degree of regional warming) under 
the A2 emission scenario for the RCM, its parent GCM (HadAM3P) and an ensemble of 16 
CMIP3 climate models. 

 

As was inferred for Milford Sound alone (Figure 4), the percentage change in 

precipitation over the RCM domain became relatively constant above the 99.9 
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percentile. Also shown in Figure 10 is the percentage change in precipitation per 

degree of warming (over the RCM domain) for the RCM’s driving model (HadAM3P). 

These global runs showed a similar pattern, although the percentage change was 

nearly always greater than the RCM. For the global model runs, the percentage 

change became relatively constant above the 99.95 percentile. This was slightly 

higher than for the RCM and may have resulted from the GCM’s lower resolution and 

therefore lower absolute values of extreme precipitation events. For both the RCM 

and its driving model, the increase in extreme precipitation was somewhat greater 

than the CC constraint of 6.5%.  

Also included in Figure 10 is the change in precipitation over the domain of 

the regional climate model for an ensemble of 16 WCRP CMIP3 global climate 

models for which simulations under the A2 emissions scenario were available. These 

models were used in an attempt to quantify the spread that might be expected from 

model uncertainties, compared to using only one model. The median of the 

ensemble reached an increase of 10%/K, which was slightly lower than for the 

HadAM3P global runs, however as the shading indicates, the spread of the CMIP3 

models was quite wide and encompassed the individual model runs. For example, at 

the 99.99 percentile 80 percent of the ensemble showed a change of between 5 and 

12 %/K. 

Given that the RCM’s dynamical downscaling of the GCM output reduced the 

expected change in precipitation extremes, it might be expected that when 

downscaling the CMIP3 models to a regional scale, the precipitation changes would 

also be reduced. 

4.  Conclusion 

Simulation of precipitation extremes by a regional climate model has been 

validated using a daily observed rainfall surface (VClim) and site-specific climate 

station observations. While comparisons with climate station observations were very 

good, significant biases existed between the RCM and VClim, partly due to the 

smoothing introduced in the creation of the observed rainfall surface. 
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Twenty-first century regional simulations under the A2 and B2 emissions 

scenarios showed that precipitation extremes are likely to increase over most, if not 

all, of New Zealand in a future, warmer, climate. However, it was not possible to 

identify regions of New Zealand in which increases in precipitation extremes were 

likely to be higher or lower than average. Three thirty year simulations each showed 

significant variation in the regions of higher than average extremes and also 

represented only one driving model. Use of the Generalised Pareto Distribution for 

fitting to the tails of modelled rainfall distributions was found to be fraught with 

difficulty. The tendency for fitting negative shape parameters resulted in an ever 

increasing percentage change in rainfall extremes for higher return periods. When 

the threshold was set high enough to ensure a negative shape parameter, the fits 

became very unstable. This suggested that a higher order polynomial may be 

necessary for studies which do not wish to make use of an a-priori assumption about 

the shape of the distribution. As such the fitted GPD curves were not used to 

extrapolate beyond the 5 year return period. 

By examining the full RCM domain covering New Zealand and the 

surrounding ocean, an estimate of the maximum expected change in extreme 

precipitation as a function of regional warming was found to be between 7 and 

9 %/K. Results from an ensemble of global climate models suggested the likely 

range to be 5 to 12 %/K. While this may give reasonable guidance for wet areas of 

the country it is likely that changes in drier areas may be more complicated. 

The current standard guidance available for councils and engineers in New 

Zealand who are planning for extreme rainfall changes under future climates is 

available in Mullan et al. (2007). Table 5.2 of this report suggested a maximum 

increase of 8% per degree of warming for all return periods and rainfall durations, a 

number derived principally from the Clausius-Clapeyron constraint. The recent 

understanding as to why climate models do not generally obey this theoretical 

constraint, combined with the results of this analysis, suggest that planners should 

be considering a wider range of increases. 
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